Up to date
This page is up to date for Redot 4.3
.
If you still find outdated information, please create an issue.
PackedByteArrayΒΆ
A packed array of bytes.
DescriptionΒΆ
An array specifically designed to hold bytes. Packs data tightly, so it saves memory for large array sizes.
PackedByteArray also provides methods to encode/decode various types to/from bytes. The way values are encoded is an implementation detail and shouldn't be relied upon when interacting with external apps.
Note: Packed arrays are always passed by reference. To get a copy of an array that can be modified independently of the original array, use duplicate. This is not the case for built-in properties and methods. The returned packed array of these are a copies, and changing it will not affect the original value. To update a built-in property you need to modify the returned array, and then assign it to the property again.
Note
There are notable differences when using this API with C#. See C# API differences to GDScript for more information.
ConstructorsΒΆ
PackedByteArray(from: PackedByteArray) |
|
PackedByteArray(from: Array) |
MethodsΒΆ
void |
append_array(array: PackedByteArray) |
void |
clear() |
decode_double(byte_offset: int) const |
|
decode_float(byte_offset: int) const |
|
decode_half(byte_offset: int) const |
|
decode_s16(byte_offset: int) const |
|
decode_s32(byte_offset: int) const |
|
decode_s64(byte_offset: int) const |
|
decode_u16(byte_offset: int) const |
|
decode_u32(byte_offset: int) const |
|
decode_u64(byte_offset: int) const |
|
decode_var(byte_offset: int, allow_objects: bool = false) const |
|
decode_var_size(byte_offset: int, allow_objects: bool = false) const |
|
decompress(buffer_size: int, compression_mode: int = 0) const |
|
decompress_dynamic(max_output_size: int, compression_mode: int = 0) const |
|
void |
encode_double(byte_offset: int, value: float) |
void |
encode_float(byte_offset: int, value: float) |
void |
encode_half(byte_offset: int, value: float) |
void |
|
void |
encode_s16(byte_offset: int, value: int) |
void |
encode_s32(byte_offset: int, value: int) |
void |
encode_s64(byte_offset: int, value: int) |
void |
|
void |
encode_u16(byte_offset: int, value: int) |
void |
encode_u32(byte_offset: int, value: int) |
void |
encode_u64(byte_offset: int, value: int) |
encode_var(byte_offset: int, value: Variant, allow_objects: bool = false) |
|
void |
|
get_string_from_ascii() const |
|
get_string_from_utf8() const |
|
get_string_from_utf16() const |
|
get_string_from_utf32() const |
|
get_string_from_wchar() const |
|
has_encoded_var(byte_offset: int, allow_objects: bool = false) const |
|
hex_encode() const |
|
is_empty() const |
|
void |
|
void |
reverse() |
void |
|
size() const |
|
void |
sort() |
to_float32_array() const |
|
to_float64_array() const |
|
to_int32_array() const |
|
to_int64_array() const |
OperatorsΒΆ
operator !=(right: PackedByteArray) |
|
operator +(right: PackedByteArray) |
|
operator ==(right: PackedByteArray) |
|
operator [](index: int) |
Constructor DescriptionsΒΆ
PackedByteArray PackedByteArray() π
Constructs an empty PackedByteArray.
PackedByteArray PackedByteArray(from: PackedByteArray)
Constructs a PackedByteArray as a copy of the given PackedByteArray.
PackedByteArray PackedByteArray(from: Array)
Constructs a new PackedByteArray. Optionally, you can pass in a generic Array that will be converted.
Method DescriptionsΒΆ
Appends an element at the end of the array (alias of push_back).
void append_array(array: PackedByteArray) π
Appends a PackedByteArray at the end of this array.
int bsearch(value: int, before: bool = true) π
Finds the index of an existing value (or the insertion index that maintains sorting order, if the value is not yet present in the array) using binary search. Optionally, a before
specifier can be passed. If false
, the returned index comes after all existing entries of the value in the array.
Note: Calling bsearch on an unsorted array results in unexpected behavior.
void clear() π
Clears the array. This is equivalent to using resize with a size of 0
.
PackedByteArray compress(compression_mode: int = 0) const π
Returns a new PackedByteArray with the data compressed. Set the compression mode using one of CompressionMode's constants.
int count(value: int) const π
Returns the number of times an element is in the array.
float decode_double(byte_offset: int) const π
Decodes a 64-bit floating-point number from the bytes starting at byte_offset
. Fails if the byte count is insufficient. Returns 0.0
if a valid number can't be decoded.
float decode_float(byte_offset: int) const π
Decodes a 32-bit floating-point number from the bytes starting at byte_offset
. Fails if the byte count is insufficient. Returns 0.0
if a valid number can't be decoded.
float decode_half(byte_offset: int) const π
Decodes a 16-bit floating-point number from the bytes starting at byte_offset
. Fails if the byte count is insufficient. Returns 0.0
if a valid number can't be decoded.
int decode_s8(byte_offset: int) const π
Decodes a 8-bit signed integer number from the bytes starting at byte_offset
. Fails if the byte count is insufficient. Returns 0
if a valid number can't be decoded.
int decode_s16(byte_offset: int) const π
Decodes a 16-bit signed integer number from the bytes starting at byte_offset
. Fails if the byte count is insufficient. Returns 0
if a valid number can't be decoded.
int decode_s32(byte_offset: int) const π
Decodes a 32-bit signed integer number from the bytes starting at byte_offset
. Fails if the byte count is insufficient. Returns 0
if a valid number can't be decoded.
int decode_s64(byte_offset: int) const π
Decodes a 64-bit signed integer number from the bytes starting at byte_offset
. Fails if the byte count is insufficient. Returns 0
if a valid number can't be decoded.
int decode_u8(byte_offset: int) const π
Decodes a 8-bit unsigned integer number from the bytes starting at byte_offset
. Fails if the byte count is insufficient. Returns 0
if a valid number can't be decoded.
int decode_u16(byte_offset: int) const π
Decodes a 16-bit unsigned integer number from the bytes starting at byte_offset
. Fails if the byte count is insufficient. Returns 0
if a valid number can't be decoded.
int decode_u32(byte_offset: int) const π
Decodes a 32-bit unsigned integer number from the bytes starting at byte_offset
. Fails if the byte count is insufficient. Returns 0
if a valid number can't be decoded.
int decode_u64(byte_offset: int) const π
Decodes a 64-bit unsigned integer number from the bytes starting at byte_offset
. Fails if the byte count is insufficient. Returns 0
if a valid number can't be decoded.
Variant decode_var(byte_offset: int, allow_objects: bool = false) const π
Decodes a Variant from the bytes starting at byte_offset
. Returns null
if a valid variant can't be decoded or the value is Object-derived and allow_objects
is false
.
int decode_var_size(byte_offset: int, allow_objects: bool = false) const π
Decodes a size of a Variant from the bytes starting at byte_offset
. Requires at least 4 bytes of data starting at the offset, otherwise fails.
PackedByteArray decompress(buffer_size: int, compression_mode: int = 0) const π
Returns a new PackedByteArray with the data decompressed. Set buffer_size
to the size of the uncompressed data. Set the compression mode using one of CompressionMode's constants.
Note: Decompression is not guaranteed to work with data not compressed by Redot, for example if data compressed with the deflate compression mode lacks a checksum or header.
PackedByteArray decompress_dynamic(max_output_size: int, compression_mode: int = 0) const π
Returns a new PackedByteArray with the data decompressed. Set the compression mode using one of CompressionMode's constants. This method only accepts brotli, gzip, and deflate compression modes.
This method is potentially slower than decompress, as it may have to re-allocate its output buffer multiple times while decompressing, whereas decompress knows it's output buffer size from the beginning.
GZIP has a maximal compression ratio of 1032:1, meaning it's very possible for a small compressed payload to decompress to a potentially very large output. To guard against this, you may provide a maximum size this function is allowed to allocate in bytes via max_output_size
. Passing -1 will allow for unbounded output. If any positive value is passed, and the decompression exceeds that amount in bytes, then an error will be returned.
Note: Decompression is not guaranteed to work with data not compressed by Redot, for example if data compressed with the deflate compression mode lacks a checksum or header.
PackedByteArray duplicate() π
Creates a copy of the array, and returns it.
void encode_double(byte_offset: int, value: float) π
Encodes a 64-bit floating-point number as bytes at the index of byte_offset
bytes. The array must have at least 8 bytes of allocated space, starting at the offset.
void encode_float(byte_offset: int, value: float) π
Encodes a 32-bit floating-point number as bytes at the index of byte_offset
bytes. The array must have at least 4 bytes of space, starting at the offset.
void encode_half(byte_offset: int, value: float) π
Encodes a 16-bit floating-point number as bytes at the index of byte_offset
bytes. The array must have at least 2 bytes of space, starting at the offset.
void encode_s8(byte_offset: int, value: int) π
Encodes a 8-bit signed integer number (signed byte) at the index of byte_offset
bytes. The array must have at least 1 byte of space, starting at the offset.
void encode_s16(byte_offset: int, value: int) π
Encodes a 16-bit signed integer number as bytes at the index of byte_offset
bytes. The array must have at least 2 bytes of space, starting at the offset.
void encode_s32(byte_offset: int, value: int) π
Encodes a 32-bit signed integer number as bytes at the index of byte_offset
bytes. The array must have at least 4 bytes of space, starting at the offset.
void encode_s64(byte_offset: int, value: int) π
Encodes a 64-bit signed integer number as bytes at the index of byte_offset
bytes. The array must have at least 8 bytes of space, starting at the offset.
void encode_u8(byte_offset: int, value: int) π
Encodes a 8-bit unsigned integer number (byte) at the index of byte_offset
bytes. The array must have at least 1 byte of space, starting at the offset.
void encode_u16(byte_offset: int, value: int) π
Encodes a 16-bit unsigned integer number as bytes at the index of byte_offset
bytes. The array must have at least 2 bytes of space, starting at the offset.
void encode_u32(byte_offset: int, value: int) π
Encodes a 32-bit unsigned integer number as bytes at the index of byte_offset
bytes. The array must have at least 4 bytes of space, starting at the offset.
void encode_u64(byte_offset: int, value: int) π
Encodes a 64-bit unsigned integer number as bytes at the index of byte_offset
bytes. The array must have at least 8 bytes of space, starting at the offset.
int encode_var(byte_offset: int, value: Variant, allow_objects: bool = false) π
Encodes a Variant at the index of byte_offset
bytes. A sufficient space must be allocated, depending on the encoded variant's size. If allow_objects
is false
, Object-derived values are not permitted and will instead be serialized as ID-only.
Assigns the given value to all elements in the array. This can typically be used together with resize to create an array with a given size and initialized elements.
int find(value: int, from: int = 0) const π
Searches the array for a value and returns its index or -1
if not found. Optionally, the initial search index can be passed.
String get_string_from_ascii() const π
Converts ASCII/Latin-1 encoded array to String. Fast alternative to get_string_from_utf8 if the content is ASCII/Latin-1 only. Unlike the UTF-8 function this function maps every byte to a character in the array. Multibyte sequences will not be interpreted correctly. For parsing user input always use get_string_from_utf8. This is the inverse of String.to_ascii_buffer.
String get_string_from_utf8() const π
Converts UTF-8 encoded array to String. Slower than get_string_from_ascii but supports UTF-8 encoded data. Use this function if you are unsure about the source of the data. For user input this function should always be preferred. Returns empty string if source array is not valid UTF-8 string. This is the inverse of String.to_utf8_buffer.
String get_string_from_utf16() const π
Converts UTF-16 encoded array to String. If the BOM is missing, system endianness is assumed. Returns empty string if source array is not valid UTF-16 string. This is the inverse of String.to_utf16_buffer.
String get_string_from_utf32() const π
Converts UTF-32 encoded array to String. System endianness is assumed. Returns empty string if source array is not valid UTF-32 string. This is the inverse of String.to_utf32_buffer.
String get_string_from_wchar() const π
Converts wide character (wchar_t
, UTF-16 on Windows, UTF-32 on other platforms) encoded array to String. Returns empty string if source array is not valid wide string. This is the inverse of String.to_wchar_buffer.
bool has(value: int) const π
Returns true
if the array contains value
.
bool has_encoded_var(byte_offset: int, allow_objects: bool = false) const π
Returns true
if a valid Variant value can be decoded at the byte_offset
. Returns false
otherwise or when the value is Object-derived and allow_objects
is false
.
String hex_encode() const π
Returns a hexadecimal representation of this array as a String.
var array = PackedByteArray([11, 46, 255])
print(array.hex_encode()) # Prints: 0b2eff
var array = new byte[] {11, 46, 255};
GD.Print(array.HexEncode()); // Prints: 0b2eff
int insert(at_index: int, value: int) π
Inserts a new element at a given position in the array. The position must be valid, or at the end of the array (idx == size()
).
Returns true
if the array is empty.
bool push_back(value: int) π
Appends an element at the end of the array.
void remove_at(index: int) π
Removes an element from the array by index.
int resize(new_size: int) π
Sets the size of the array. If the array is grown, reserves elements at the end of the array. If the array is shrunk, truncates the array to the new size. Calling resize once and assigning the new values is faster than adding new elements one by one.
void reverse() π
Reverses the order of the elements in the array.
int rfind(value: int, from: int = -1) const π
Searches the array in reverse order. Optionally, a start search index can be passed. If negative, the start index is considered relative to the end of the array.
void set(index: int, value: int) π
Changes the byte at the given index.
Returns the number of elements in the array.
PackedByteArray slice(begin: int, end: int = 2147483647) const π
Returns the slice of the PackedByteArray, from begin
(inclusive) to end
(exclusive), as a new PackedByteArray.
The absolute value of begin
and end
will be clamped to the array size, so the default value for end
makes it slice to the size of the array by default (i.e. arr.slice(1)
is a shorthand for arr.slice(1, arr.size())
).
If either begin
or end
are negative, they will be relative to the end of the array (i.e. arr.slice(0, -2)
is a shorthand for arr.slice(0, arr.size() - 2)
).
void sort() π
Sorts the elements of the array in ascending order.
PackedFloat32Array to_float32_array() const π
Returns a copy of the data converted to a PackedFloat32Array, where each block of 4 bytes has been converted to a 32-bit float (C++ float
).
The size of the input array must be a multiple of 4 (size of 32-bit float). The size of the new array will be byte_array.size() / 4
.
If the original data can't be converted to 32-bit floats, the resulting data is undefined.
PackedFloat64Array to_float64_array() const π
Returns a copy of the data converted to a PackedFloat64Array, where each block of 8 bytes has been converted to a 64-bit float (C++ double
, Redot float).
The size of the input array must be a multiple of 8 (size of 64-bit double). The size of the new array will be byte_array.size() / 8
.
If the original data can't be converted to 64-bit floats, the resulting data is undefined.
PackedInt32Array to_int32_array() const π
Returns a copy of the data converted to a PackedInt32Array, where each block of 4 bytes has been converted to a signed 32-bit integer (C++ int32_t
).
The size of the input array must be a multiple of 4 (size of 32-bit integer). The size of the new array will be byte_array.size() / 4
.
If the original data can't be converted to signed 32-bit integers, the resulting data is undefined.
PackedInt64Array to_int64_array() const π
Returns a copy of the data converted to a PackedInt64Array, where each block of 8 bytes has been converted to a signed 64-bit integer (C++ int64_t
, Redot int).
The size of the input array must be a multiple of 8 (size of 64-bit integer). The size of the new array will be byte_array.size() / 8
.
If the original data can't be converted to signed 64-bit integers, the resulting data is undefined.
Operator DescriptionsΒΆ
bool operator !=(right: PackedByteArray) π
Returns true
if contents of the arrays differ.
PackedByteArray operator +(right: PackedByteArray) π
Returns a new PackedByteArray with contents of right
added at the end of this array. For better performance, consider using append_array instead.
bool operator ==(right: PackedByteArray) π
Returns true
if contents of both arrays are the same, i.e. they have all equal bytes at the corresponding indices.
int operator [](index: int) π
Returns the byte at index index
. Negative indices can be used to access the elements starting from the end. Using index out of array's bounds will result in an error.
Note that the byte is returned as a 64-bit int.