Attention: Here be dragons (unstable version)

This is the latest (unstable) version of this documentation, which may document features not available in or compatible with released stable versions of Redot.

Shading language

Introduction

Redot uses a shading language similar to GLSL ES 3.0. Most datatypes and functions are supported, and the few remaining ones will likely be added over time.

If you are already familiar with GLSL, the Redot Shader Migration Guide is a resource that will help you transition from regular GLSL to Redot's shading language.

Data types

Most GLSL ES 3.0 datatypes are supported:

Type

Description

void

Void datatype, useful only for functions that return nothing.

bool

Boolean datatype, can only contain true or false.

bvec2

Two-component vector of booleans.

bvec3

Three-component vector of booleans.

bvec4

Four-component vector of booleans.

int

32 bit signed scalar integer.

ivec2

Two-component vector of signed integers.

ivec3

Three-component vector of signed integers.

ivec4

Four-component vector of signed integers.

uint

Unsigned scalar integer; can't contain negative numbers.

uvec2

Two-component vector of unsigned integers.

uvec3

Three-component vector of unsigned integers.

uvec4

Four-component vector of unsigned integers.

float

32 bit floating-point scalar.

vec2

Two-component vector of floating-point values.

vec3

Three-component vector of floating-point values.

vec4

Four-component vector of floating-point values.

mat2

2x2 matrix, in column major order.

mat3

3x3 matrix, in column major order.

mat4

4x4 matrix, in column major order.

sampler2D

Sampler type for binding 2D textures, which are read as float.

isampler2D

Sampler type for binding 2D textures, which are read as signed integer.

usampler2D

Sampler type for binding 2D textures, which are read as unsigned integer.

sampler2DArray

Sampler type for binding 2D texture arrays, which are read as float.

isampler2DArray

Sampler type for binding 2D texture arrays, which are read as signed integer.

usampler2DArray

Sampler type for binding 2D texture arrays, which are read as unsigned integer.

sampler3D

Sampler type for binding 3D textures, which are read as float.

isampler3D

Sampler type for binding 3D textures, which are read as signed integer.

usampler3D

Sampler type for binding 3D textures, which are read as unsigned integer.

samplerCube

Sampler type for binding Cubemaps, which are read as float.

samplerCubeArray

Sampler type for binding Cubemap arrays, which are read as float. Only supported in Forward+ and Mobile, not Compatibility.

samplerExternalOES

External sampler type. Only supported in Compatibility/Android platform.

Warning

Local variables are not initialized to a default value such as 0.0. If you use a variable without assigning it first, it will contain whatever value was already present at that memory location, and unpredictable visual glitches will appear. However, uniforms and varyings are initialized to a default value.

Comments

The shading language supports the same comment syntax as used in C# and C++:

// Single-line comment.
int a = 2;  // Another single-line comment.

/*
Multi-line comment.
The comment ends when the ending delimiter is found
(here, it's on the line below).
*/
int b = 3;

Additionally, you can use documentation comments that are displayed in the inspector when hovering a shader parameter. Documentation comments are currently only supported when placed immediately above a uniform declaration. These documentation comments only support the multiline comment syntax and must use two leading asterisks (/**) instead of just one (/*):

/**
 * This is a documentation comment.
 * These lines will appear in the inspector when hovering the shader parameter
 * named "Something".
 * You can use [b]BBCode[/b] [i]formatting[/i] in the comment.
 */
uniform int something = 1;

The asterisks on the follow-up lines are not required, but are recommended as per the Shaders style guide. These asterisks are automatically stripped by the inspector, so they won't appear in the tooltip.

Casting

Just like GLSL ES 3.0, implicit casting between scalars and vectors of the same size but different type is not allowed. Casting of types of different size is also not allowed. Conversion must be done explicitly via constructors.

Example:

float a = 2; // invalid
float a = 2.0; // valid
float a = float(2); // valid

Default integer constants are signed, so casting is always needed to convert to unsigned:

int a = 2; // valid
uint a = 2; // invalid
uint a = uint(2); // valid

Members

Individual scalar members of vector types are accessed via the "x", "y", "z" and "w" members. Alternatively, using "r", "g", "b" and "a" also works and is equivalent. Use whatever fits best for your needs.

For matrices, use the m[column][row] indexing syntax to access each scalar, or m[column] to access a vector by column index. For example, for accessing the y-component of the translation from a mat4 transform matrix (4th column, 2nd line) you use m[3][1] or m[3].y.

Constructing

Construction of vector types must always pass:

// The required amount of scalars
vec4 a = vec4(0.0, 1.0, 2.0, 3.0);
// Complementary vectors and/or scalars
vec4 a = vec4(vec2(0.0, 1.0), vec2(2.0, 3.0));
vec4 a = vec4(vec3(0.0, 1.0, 2.0), 3.0);
// A single scalar for the whole vector
vec4 a = vec4(0.0);

Construction of matrix types requires vectors of the same dimension as the matrix, interpreted as columns. You can also build a diagonal matrix using matx(float) syntax. Accordingly, mat4(1.0) is an identity matrix.

mat2 m2 = mat2(vec2(1.0, 0.0), vec2(0.0, 1.0));
mat3 m3 = mat3(vec3(1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0), vec3(0.0, 0.0, 1.0));
mat4 identity = mat4(1.0);

Matrices can also be built from a matrix of another dimension. There are two rules:

1. If a larger matrix is constructed from a smaller matrix, the additional rows and columns are set to the values they would have in an identity matrix. 2. If a smaller matrix is constructed from a larger matrix, the top, left submatrix of the larger matrix is used.

mat3 basis = mat3(MODEL_MATRIX);
mat4 m4 = mat4(basis);
mat2 m2 = mat2(m4);

Swizzling

It is possible to obtain any combination of components in any order, as long as the result is another vector type (or scalar). This is easier shown than explained:

vec4 a = vec4(0.0, 1.0, 2.0, 3.0);
vec3 b = a.rgb; // Creates a vec3 with vec4 components.
vec3 b = a.ggg; // Also valid; creates a vec3 and fills it with a single vec4 component.
vec3 b = a.bgr; // "b" will be vec3(2.0, 1.0, 0.0).
vec3 b = a.xyz; // Also rgba, xyzw are equivalent.
vec3 b = a.stp; // And stpq (for texture coordinates).
float c = b.w; // Invalid, because "w" is not present in vec3 b.
vec3 c = b.xrt; // Invalid, mixing different styles is forbidden.
b.rrr = a.rgb; // Invalid, assignment with duplication.
b.bgr = a.rgb; // Valid assignment. "b"'s "blue" component will be "a"'s "red" and vice versa.

Precision

It is possible to add precision modifiers to datatypes; use them for uniforms, variables, arguments and varyings:

lowp vec4 a = vec4(0.0, 1.0, 2.0, 3.0); // low precision, usually 8 bits per component mapped to 0-1
mediump vec4 a = vec4(0.0, 1.0, 2.0, 3.0); // medium precision, usually 16 bits or half float
highp vec4 a = vec4(0.0, 1.0, 2.0, 3.0); // high precision, uses full float or integer range (32 bit default)

Using lower precision for some operations can speed up the math involved (at the cost of less precision). This is rarely needed in the vertex processor function (where full precision is needed most of the time), but is often useful in the fragment processor.

Some architectures (mainly mobile) can benefit significantly from this, but there are downsides such as the additional overhead of conversion between precisions. Refer to the documentation of the target architecture for further information. In many cases, mobile drivers cause inconsistent or unexpected behavior and it is best to avoid specifying precision unless necessary.

Arrays

Arrays are containers for multiple variables of a similar type.

Local arrays

Local arrays are declared in functions. They can use all of the allowed datatypes, except samplers. The array declaration follows a C-style syntax: [const] + [precision] + typename + identifier + [array size].

void fragment() {
    float arr[3];
}

They can be initialized at the beginning like:

float float_arr[3] = float[3] (1.0, 0.5, 0.0); // first constructor

int int_arr[3] = int[] (2, 1, 0); // second constructor

vec2 vec2_arr[3] = { vec2(1.0, 1.0), vec2(0.5, 0.5), vec2(0.0, 0.0) }; // third constructor

bool bool_arr[] = { true, true, false }; // fourth constructor - size is defined automatically from the element count

You can declare multiple arrays (even with different sizes) in one expression:

float a[3] = float[3] (1.0, 0.5, 0.0),
b[2] = { 1.0, 0.5 },
c[] = { 0.7 },
d = 0.0,
e[5];

To access an array element, use the indexing syntax:

float arr[3];

arr[0] = 1.0; // setter

COLOR.r = arr[0]; // getter

Arrays also have a built-in function .length() (not to be confused with the built-in length() function). It doesn't accept any parameters and will return the array's size.

float arr[] = { 0.0, 1.0, 0.5, -1.0 };
for (int i = 0; i < arr.length(); i++) {
    // ...
}

Note

If you use an index either below 0 or greater than array size - the shader will crash and break rendering. To prevent this, use length(), if, or clamp() functions to ensure the index is between 0 and the array's length. Always carefully test and check your code. If you pass a constant expression or a number, the editor will check its bounds to prevent this crash.

Global arrays

You can declare arrays in global space as either const or uniform:

shader_type spatial;

const lowp vec3 v[1] = lowp vec3[1] ( vec3(0, 0, 1) );
uniform lowp vec3 w[1];

void fragment() {
  ALBEDO = v[0] + w[0];
}

Note

Global arrays use the same syntax as local arrays, except with a const or uniform added to their declaration. Note that uniform arrays can't have a default value.

Constants

Use the const keyword before the variable declaration to make that variable immutable, which means that it cannot be modified. All basic types, except samplers can be declared as constants. Accessing and using a constant value is slightly faster than using a uniform. Constants must be initialized at their declaration.

const vec2 a = vec2(0.0, 1.0);
vec2 b;

a = b; // invalid
b = a; // valid

Constants cannot be modified and additionally cannot have hints, but multiple of them (if they have the same type) can be declared in a single expression e.g

const vec2 V1 = vec2(1, 1), V2 = vec2(2, 2);

Similar to variables, arrays can also be declared with const.

const float arr[] = { 1.0, 0.5, 0.0 };

arr[0] = 1.0; // invalid

COLOR.r = arr[0]; // valid

Constants can be declared both globally (outside of any function) or locally (inside a function). Global constants are useful when you want to have access to a value throughout your shader that does not need to be modified. Like uniforms, global constants are shared between all shader stages, but they are not accessible outside of the shader.

shader_type spatial;

const float GOLDEN_RATIO = 1.618033988749894;

Constants of the float type must be initialized using . notation after the decimal part or by using the scientific notation. The optional f post-suffix is also supported.

float a = 1.0;
float b = 1.0f; // same, using suffix for clarity
float c = 1e-1; // gives 0.1 by using the scientific notation

Constants of the uint (unsigned int) type must have a u suffix to differentiate them from signed integers. Alternatively, this can be done by using the uint(x) built-in conversion function.

uint a = 1u;
uint b = uint(1);

Structs

Structs are compound types which can be used for better abstraction of shader code. You can declare them at the global scope like:

struct PointLight {
    vec3 position;
    vec3 color;
    float intensity;
};

After declaration, you can instantiate and initialize them like:

void fragment()
{
    PointLight light;
    light.position = vec3(0.0);
    light.color = vec3(1.0, 0.0, 0.0);
    light.intensity = 0.5;
}

Or use struct constructor for same purpose:

PointLight light = PointLight(vec3(0.0), vec3(1.0, 0.0, 0.0), 0.5);

Structs may contain other struct or array, you can also instance them as global constant:

shader_type spatial;

...

struct Scene {
    PointLight lights[2];
};

const Scene scene = Scene(PointLight[2](PointLight(vec3(0.0, 0.0, 0.0), vec3(1.0, 0.0, 0.0), 1.0), PointLight(vec3(0.0, 0.0, 0.0), vec3(1.0, 0.0, 0.0), 1.0)));

void fragment()
{
    ALBEDO = scene.lights[0].color;
}

You can also pass them to functions:

shader_type canvas_item;

...

Scene construct_scene(PointLight light1, PointLight light2) {
    return Scene({light1, light2});
}

void fragment()
{
    COLOR.rgb = construct_scene(PointLight(vec3(0.0, 0.0, 0.0), vec3(1.0, 0.0, 0.0), 1.0), PointLight(vec3(0.0, 0.0, 0.0), vec3(1.0, 0.0, 1.0), 1.0)).lights[0].color;
}

Operators

Redot shading language supports the same set of operators as GLSL ES 3.0. Below is the list of them in precedence order:

Precedence

Class

Operator

1 (highest)

parenthetical grouping

()

2

unary

+, -, !, ~

3

multiplicative

/, *, %

4

additive

+, -

5

bit-wise shift

<<, >>

6

relational

<, >, <=, >=

7

equality

==, !=

8

bit-wise AND

&

9

bit-wise exclusive OR

^

10

bit-wise inclusive OR

|

11

logical AND

&&

12 (lowest)

logical inclusive OR

||

Note

Most operators that accept vectors or matrices (multiplication, division, etc) operate component-wise, meaning the function is applied to the first value of each vector and then on the second value of each vector, etc. Some examples:

Operation

Equivalent Scalar Operation

vec3(4, 5, 6) + 2

vec3(4 + 2, 5 + 2, 6 + 2)

vec2(3, 4) * vec2(10, 20)

vec2(3 * 10, 4 * 20)

mat2(vec2(1, 2), vec2(3, 4)) + 10

mat2(vec2(1 + 10, 2 + 10), vec2(3 + 10, 4 + 10))

The GLSL Language Specification says under section 5.10 Vector and Matrix Operations:

With a few exceptions, operations are component-wise. Usually, when an operator operates on a vector or matrix, it is operating independently on each component of the vector or matrix, in a component-wise fashion. [...] The exceptions are matrix multiplied by vector, vector multiplied by matrix, and matrix multiplied by matrix. These do not operate component-wise, but rather perform the correct linear algebraic multiply.

Flow control

Redot Shading language supports the most common types of flow control:

// `if` and `else`.
if (cond) {

} else {

}

// Ternary operator.
// This is an expression that behaves like `if`/`else` and returns the value.
// If `cond` evaluates to `true`, `result` will be `9`.
// Otherwise, `result` will be `5`.
int result = cond ? 9 : 5;

// `switch`.
switch (i) { // `i` should be a signed integer expression.
    case -1:
        break;
    case 0:
        return; // `break` or `return` to avoid running the next `case`.
    case 1: // Fallthrough (no `break` or `return`): will run the next `case`.
    case 2:
        break;
    //...
    default: // Only run if no `case` above matches. Optional.
        break;
}

// `for` loop. Best used when the number of elements to iterate on
// is known in advance.
for (int i = 0; i < 10; i++) {

}

// `while` loop. Best used when the number of elements to iterate on
// is not known in advance.
while (cond) {

}

// `do while`. Like `while`, but always runs at least once even if `cond`
// never evaluates to `true`.
do {

} while (cond);

Keep in mind that in modern GPUs, an infinite loop can exist and can freeze your application (including editor). Redot can't protect you from this, so be careful not to make this mistake!

Also, when comparing floating-point values against a number, make sure to compare them against a range instead of an exact number.

A comparison like if (value == 0.3) may not evaluate to true. Floating-point math is often approximate and can defy expectations. It can also behave differently depending on the hardware.

Don't do this.

float value = 0.1 + 0.2;

// May not evaluate to `true`!
if (value == 0.3) {
    // ...
}

Instead, always perform a range comparison with an epsilon value. The larger the floating-point number (and the less precise the floating-point number), the larger the epsilon value should be.

const float EPSILON = 0.0001;
if (value >= 0.3 - EPSILON && value <= 0.3 + EPSILON) {
    // ...
}

See floating-point-gui.de for more information.

Discarding

Fragment, light, and custom functions (called from fragment or light) can use the discard keyword. If used, the fragment is discarded and nothing is written.

Beware that discard has a performance cost when used, as it will prevent the depth prepass from being effective on any surfaces using the shader. Also, a discarded pixel still needs to be rendered in the vertex shader, which means a shader that uses discard on all of its pixels is still more expensive to render compared to not rendering any object in the first place.

Functions

It is possible to define functions in a Redot shader. They use the following syntax:

ret_type func_name(args) {
    return ret_type; // if returning a value
}

// a more specific example:

int sum2(int a, int b) {
    return a + b;
}

You can only use functions that have been defined above (higher in the editor) the function from which you are calling them. Redefining a function that has already been defined above (or is a built-in function name) will cause an error.

Function arguments can have special qualifiers:

  • in: Means the argument is only for reading (default).

  • out: Means the argument is only for writing.

  • inout: Means the argument is fully passed via reference.

  • const: Means the argument is a constant and cannot be changed, may be combined with in qualifier.

Example below:

void sum2(int a, int b, inout int result) {
    result = a + b;
}

Function overloading is supported. You can define multiple functions with the same name, but different arguments. Note that implicit casting in overloaded function calls is not allowed, such as from int to float (1 to 1.0).

vec3 get_color(int t) {
    return vec3(1, 0, 0); // Red color.
}
vec3 get_color(float t) {
    return vec3(0, 1, 0); // Green color.
}
void fragment() {
    vec3 red = get_color(1);
    vec3 green = get_color(1.0);
}

Varyings

To send data from the vertex to the fragment (or light) processor function, varyings are used. They are set for every primitive vertex in the vertex processor, and the value is interpolated for every pixel in the fragment processor.

shader_type spatial;

varying vec3 some_color;

void vertex() {
    some_color = NORMAL; // Make the normal the color.
}

void fragment() {
    ALBEDO = some_color;
}

void light() {
    DIFFUSE_LIGHT = some_color * 100; // optionally
}

Varying can also be an array:

shader_type spatial;

varying float var_arr[3];

void vertex() {
    var_arr[0] = 1.0;
    var_arr[1] = 0.0;
}

void fragment() {
    ALBEDO = vec3(var_arr[0], var_arr[1], var_arr[2]); // red color
}

It's also possible to send data from fragment to light processors using varying keyword. To do so you can assign it in the fragment and later use it in the light function.

shader_type spatial;

varying vec3 some_light;

void fragment() {
    some_light = ALBEDO * 100.0; // Make a shining light.
}

void light() {
    DIFFUSE_LIGHT = some_light;
}

Note that varying may not be assigned in custom functions or a light processor function like:

shader_type spatial;

varying float test;

void foo() {
    test = 0.0; // Error.
}

void vertex() {
    test = 0.0;
}

void light() {
    test = 0.0; // Error too.
}

This limitation was introduced to prevent incorrect usage before initialization.

Interpolation qualifiers

Certain values are interpolated during the shading pipeline. You can modify how these interpolations are done by using interpolation qualifiers.

shader_type spatial;

varying flat vec3 our_color;

void vertex() {
    our_color = COLOR.rgb;
}

void fragment() {
    ALBEDO = our_color;
}

There are two possible interpolation qualifiers:

Qualifier

Description

flat

The value is not interpolated.

smooth

The value is interpolated in a perspective-correct fashion. This is the default.

Uniforms

Passing values to shaders is possible with uniforms, which are defined in the global scope of the shader, outside of functions. When a shader is later assigned to a material, the uniforms will appear as editable parameters in the material's inspector. Uniforms can't be written from within the shader. Any data type except for void can be a uniform.

shader_type spatial;

uniform float some_value;

uniform vec3 colors[3];

You can set uniforms in the editor in the material's inspector. Alternately, you can set them from code.

Uniform hints

Redot provides optional uniform hints to make the compiler understand what the uniform is used for, and how the editor should allow users to modify it.

shader_type spatial;

uniform vec4 color : source_color;
uniform float amount : hint_range(0, 1);
uniform vec4 other_color : source_color = vec4(1.0); // Default values go after the hint.
uniform sampler2D image : source_color;

Uniforms can also be assigned default values:

shader_type spatial;

uniform vec4 some_vector = vec4(0.0);
uniform vec4 some_color : source_color = vec4(1.0);

Note that when adding a default value and a hint, the default value goes after the hint.

Full list of uniform hints below:

Type

Hint

Description

vec3, vec4

source_color

Used as color.

int

hint_enum("String1", "String2")

Displays int input as a dropdown widget in the editor.

int, float

hint_range(min, max[, step])

Restricted to values in a range (with min/max/step).

sampler2D

source_color

Used as albedo color.

sampler2D

hint_normal

Used as normalmap.

sampler2D

hint_default_white

As value or albedo color, default to opaque white.

sampler2D

hint_default_black

As value or albedo color, default to opaque black.

sampler2D

hint_default_transparent

As value or albedo color, default to transparent black.

sampler2D

hint_anisotropy

As flowmap, default to right.

sampler2D

hint_roughness[_r, _g, _b, _a, _normal, _gray]

Used for roughness limiter on import (attempts reducing specular aliasing). _normal is a normal map that guides the roughness limiter, with roughness increasing in areas that have high-frequency detail.

sampler2D

filter[_nearest, _linear][_mipmap][_anisotropic]

Enabled specified texture filtering.

sampler2D

repeat[_enable, _disable]

Enabled texture repeating.

sampler2D

hint_screen_texture

Texture is the screen texture.

sampler2D

hint_depth_texture

Texture is the depth texture.

sampler2D

hint_normal_roughness_texture

Texture is the normal roughness texture (only supported in Forward+).

Using hint_enum

You can access int values as a readable dropdown widget using the hint_enum uniform:

uniform int noise_type : hint_enum("OpenSimplex2", "Cellular", "Perlin", "Value") = 0;

You can assign explicit values to the hint_enum uniform using colon syntax similar to GDScript:

uniform int character_speed: hint_enum("Slow:30", "Average:60", "Very Fast:200") = 60;

The value will be stored as an integer, corresponding to the index of the selected option (i.e. 0, 1, or 2) or the value assigned by colon syntax (i.e. 30, 60, or 200). When setting the value with set_shader_parameter(), you must use the integer value, not the String name.

Using source_color

Any texture which contains sRGB color data requires a source_color hint in order to be correctly sampled. This is because Redot renders in linear color space, but some textures contain sRGB color data. If this hint is not used, the texture will appear washed out.

Albedo and color textures should typically have a source_color hint. Normal, roughness, metallic, and height textures typically do not need a source_color hint.

Using source_color hint is required in the Forward+ and Mobile renderers, and in canvas_item shaders when HDR 2D is enabled. The source_color hint is optional for the Compatibility renderer, and for canvas_item shaders if HDR 2D is disabled. However, it is recommended to always use the source_color hint, because it works even if you change renderers or disable HDR 2D.

Uniform groups

To group multiple uniforms in a section in the inspector, you can use a group_uniform keyword like this:

group_uniforms MyGroup;
uniform sampler2D test;

You can close the group by using:

group_uniforms;

The syntax also supports subgroups (it's not mandatory to declare the base group before this):

group_uniforms MyGroup.MySubgroup;

Global uniforms

Sometimes, you want to modify a parameter in many different shaders at once. With a regular uniform, this takes a lot of work as all these shaders need to be tracked and the uniform needs to be set for each of them. Global uniforms allow you to create and update uniforms that will be available in all shaders, in every shader type (canvas_item, spatial, particles, sky and fog).

Global uniforms are especially useful for environmental effects that affect many objects in a scene, like having foliage bend when the player is nearby, or having objects move with the wind.

Note

Global uniforms are not the same as global scope for an individual shader. While regular uniforms are defined outside of shader functions and are therefore the global scope of the shader, global uniforms are global to all shaders in the entire project (but within each shader, are also in the global scope).

To create a global uniform, open the Project Settings then go to the Shader Globals tab. Specify a name for the uniform (case-sensitive) and a type, then click Add in the top-right corner of the dialog. You can then edit the value assigned to the uniform by clicking the value in the list of uniforms:

Adding a global uniform in the Shader Globals tab of the Project Settings

Adding a global uniform in the Shader Globals tab of the Project Settings

After creating a global uniform, you can use it in a shader as follows:

shader_type canvas_item;

global uniform vec4 my_color;

void fragment() {
    COLOR = my_color.rgb;
}

Note that the global uniform must exist in the Project Settings at the time the shader is saved, or compilation will fail. While you can assign a default value using global uniform vec4 my_color = ... in the shader code, it will be ignored as the global uniform must always be defined in the Project Settings anyway.

To change the value of a global uniform at runtime, use the RenderingServer.global_shader_parameter_set method in a script:

RenderingServer.global_shader_parameter_set("my_color", Color(0.3, 0.6, 1.0))

Assigning global uniform values can be done as many times as desired without impacting performance, as setting data doesn't require synchronization between the CPU and GPU.

You can also add or remove global uniforms at runtime:

RenderingServer.global_shader_parameter_add("my_color", RenderingServer.GLOBAL_VAR_TYPE_COLOR, Color(0.3, 0.6, 1.0))
RenderingServer.global_shader_parameter_remove("my_color")

Adding or removing global uniforms at runtime has a performance cost, although it's not as pronounced compared to getting global uniform values from a script (see the warning below).

Warning

While you can query the value of a global uniform at runtime in a script using RenderingServer.global_shader_parameter_get("uniform_name"), this has a large performance penalty as the rendering thread needs to synchronize with the calling thread.

Therefore, it's not recommended to read global shader uniform values continuously in a script. If you need to read values in a script after setting them, consider creating an autoload where you store the values you need to query at the same time you're setting them as global uniforms.

Per-instance uniforms

Note

Per-instance uniforms are only available in spatial (3D) shaders.

Sometimes, you want to modify a parameter on each node using the material. As an example, in a forest full of trees, when you want each tree to have a slightly different color that is editable by hand. Without per-instance uniforms, this requires creating a unique material for each tree (each with a slightly different hue). This makes material management more complex, and also has a performance overhead due to the scene requiring more unique material instances. Vertex colors could also be used here, but they'd require creating unique copies of the mesh for each different color, which also has a performance overhead.

Per-instance uniforms are set on each GeometryInstance3D, rather than on each Material instance. Take this into account when working with meshes that have multiple materials assigned to them, or MultiMesh setups.

shader_type spatial;

// Provide a hint to edit as a color. Optionally, a default value can be provided.
// If no default value is provided, the type's default is used (e.g. opaque black for colors).
instance uniform vec4 my_color : source_color = vec4(1.0, 0.5, 0.0, 1.0);

void fragment() {
    ALBEDO = my_color.rgb;
}

After saving the shader, you can change the per-instance uniform's value using the inspector:

Setting a per-instance uniform's value in the GeometryInstance3D section of the inspector

Setting a per-instance uniform's value in the GeometryInstance3D section of the inspector

Per-instance uniform values can also be set at runtime using set_instance_shader_parameter method on a node that inherits from GeometryInstance3D:

$MeshInstance3D.set_instance_shader_parameter("my_color", Color(0.3, 0.6, 1.0))

When using per-instance uniforms, there are some restrictions you should be aware of:

  • Per-instance uniforms do not support textures, only regular scalar and vector types. As a workaround, you can pass a texture array as a regular uniform, then pass the index of the texture to be drawn using a per-instance uniform.

  • There is a practical maximum limit of 16 instance uniforms per shader.

  • If your mesh uses multiple materials, the parameters for the first mesh material found will "win" over the subsequent ones, unless they have the same name, index and type. In this case, all parameters are affected correctly.

  • If you run into the above situation, you can avoid clashes by manually specifying the index (0-15) of the instance uniform by using the instance_index hint:

instance uniform vec4 my_color : source_color, instance_index(5);

Setting uniforms from code

You can set uniforms from GDScript:

material.set_shader_parameter("some_value", some_value)

material.set_shader_parameter("colors", [Vector3(1, 0, 0), Vector3(0, 1, 0), Vector3(0, 0, 1)])

Note

The first argument to set_shader_parameter is the name of the uniform in the shader. It must match exactly to the name of the uniform in the shader or else it will not be recognized.

GDScript uses different variable types than GLSL does, so when passing variables from GDScript to shaders, Redot converts the type automatically. Below is a table of the corresponding types:

GLSL type

GDScript type

Notes

bool

bool

bvec2

int

Bitwise packed int where bit 0 (LSB) corresponds to x.

For example, a bvec2 of (bx, by) could be created in the following way:

bvec2_input: int = (int(bx)) | (int(by) << 1)

bvec3

int

Bitwise packed int where bit 0 (LSB) corresponds to x.

bvec4

int

Bitwise packed int where bit 0 (LSB) corresponds to x.

int

int

ivec2

Vector2i

ivec3

Vector3i

ivec4

Vector4i

uint

int

uvec2

Vector2i

uvec3

Vector3i

uvec4

Vector4i

float

float

vec2

Vector2

vec3

Vector3, Color

When Color is used, it will be interpreted as (r, g, b).

vec4

Vector4, Color, Rect2, Plane, Quaternion

When Color is used, it will be interpreted as (r, g, b, a).

When Rect2 is used, it will be interpreted as (position.x, position.y, size.x, size.y).

When Plane is used it will be interpreted as (normal.x, normal.y, normal.z, d).

mat2

Transform2D

mat3

Basis

mat4

Projection, Transform3D

When a Transform3D is used, the w Vector is set to the identity.

sampler2D

Texture2D

isampler2D

Texture2D

usampler2D

Texture2D

sampler2DArray

Texture2DArray

isampler2DArray

Texture2DArray

usampler2DArray

Texture2DArray

sampler3D

Texture3D

isampler3D

Texture3D

usampler3D

Texture3D

samplerCube

Cubemap

See Changing import type for instructions on importing cubemaps for use in Redot.

samplerCubeArray

CubemapArray

Only supported in Forward+ and Mobile, not Compatibility.

samplerExternalOES

ExternalTexture

Only supported in Compatibility/Android platform.

Note

Be careful when setting shader uniforms from GDScript, no error will be thrown if the type does not match. Your shader will just exhibit undefined behavior.

Warning

As with the last note, no error will be thrown if the typing does not match while setting a shader uniform, this unintuitively includes setting a (GDscript) 64 bit int/float into a Redot shader language int/float (32 bit). This may lead to unintentional consequences in cases where high precision is required.

Uniform limits

There is a limit to the total size of shader uniforms that you can use in a single shader. On most desktop platforms, this limit is 65536 bytes, or 4096 vec4 uniforms. On mobile platforms, the limit is typically 16384 bytes, or 1024 vec4 uniforms. Vector uniforms smaller than a vec4, such as vec2 or vec3, are padded to the size of a vec4. Scalar uniforms such as int or float are not padded, and bool is padded to the size of an int.

Arrays count as the total size of their contents. If you need a uniform array that is larger than this limit, consider packing the data into a texture instead, since the contents of a texture do not count towards this limit, only the size of the sampler uniform.

Built-in variables

A large number of built-in variables are available, like UV, COLOR and VERTEX. What variables are available depends on the type of shader (spatial, canvas_item, particle, etc) and the function used (vertex, fragment, light, start, process, ``sky, or fog). For a list of the built-in variables that are available, please see the corresponding pages:

Built-in functions

A large number of built-in functions are supported, conforming to GLSL ES 3.0. See the Built-in functions page for details.